How a Blockchain Solution May Have Helped Avoid An Investment Debacle

Abraaj Group was the poster child of Emerging Markets private equity investment.  Founded by Arif Naqvi in 2002, the firm grew to $14 billion and counted among its investors such prominent entities as Teachers Retirement System of Texas, Bill & Melinda Gates Foundation, Washington State Investment Board, World Bank, and dozens of other highly sophisticated investors.  At the height of its success in 2015, the firm raised almost $1.5 billion to invest in Africa, in just under 12 months.

Then things spiraled out of control quickly.

Several limited partners began asking questions about the use of funds.   A 2017 independent audit showed that the management company was siphoning investors’ money to fund its own operations.  A spectacular collapse followed. The founder, Arif Naqvi was arrested on fraud charges, along with other two top executives.  What took 16 years to build unraveled in less than 4 months.

Many investors who made an investment in Abraaj followed advice of a single large consultant, Hamilton Lane, who encouraged investors to commit as much as $900 million to Abraaj in 2017, just a few months before things began unraveling.

Yet, others avoided investment. TorreyCove Capital, another consulting firm, wrote: “we met with Abraaj several times over the course of months and had concerns… we were fortunate enough to be able to speak with former employees who described problematic management practices”, according to a Pension & Investments article.

To paraphrase Tolstoy, every debacle in the world of private funds is different in its own way.  What unites most of them is that sophisticated investors who suffered the loss always realize in hindsight how easily the problem could have been avoided had the right questions been asked early enough.

The fundamental problem lies in how due diligence is performed.  Many institutional investors pay hundreds of thousands (or millions) of dollars to consulting firms to generate due diligence reports on all their current and prospective investments.  Many others, including smaller investors, perform some level of due diligence themselves, or worse yet, not at all. 

In every case where due diligence is performed, each investor obtains it from a single source – either an external consultant or an internal team.  In case of Abraaj, the most prominent external source of due diligence missed important warning signals, resulting in many clients making a bad decision.

A large component of the risk of investing in private funds comes from non-investment activities. It is known as operational risk.    Because it’s so difficult to quantify, it is used as a binary filter.   If a problem is noticed, the operational risk filters out the investment, otherwise it is allowed.   As with all binary decisions, it is critically important to minimize the likelihood that something is missed.  As readers of our previous blog posts know, we are fervent believers that a consensus opinion of experts can help increase the effectiveness of the operational risk filter. 

Imagine the world where due diligence performed by many experts is recorded on a private blockchain and shared in a secure, trusted manner.  How many problems would be avoided if the dissenting voices were heard along with the majority opinion?   This, by the way, is the reason why public companies are eager to obtain analyst coverage from multiple sources: broader coverage = better decisions = wider investor participation.

In the world we envision, access to multiple expert opinions about private funds would make the entire ecosystem more transparent, less prone to manipulation, and improve transactional flow, something that all participants are ultimately hoping for.

DDX Technologies is developing a comprehensive protocol for exchange of due diligence on a distributed ledger. To learn about our project or apply to join the group of large financial institutions helping us with the development of the blockchain due diligence protocol, visit our website,

Due Diligence and the Fallacy of Risk-Adjusted Returns

A 2008 paper “How Unlucky is 25-Sigma”[1], describes an interview with Goldman Sach’s then-CFO David Viniar who referred to their flagship fund’s 27% loss in August 2007 as a “25 Sigma event”.  The paper goes on to analyze this statement and quickly shows that a 25-Sigma event would take place once in  1.309e+135 years, a number so large that the paper accurately describes this time frame as “being on par with Hell freezing over”.

Mr. Viniar’s estimate was off by more than the age of the universe.  Clearly, no measure of market risk (a.k.a. Sigma, or standard deviation of returns) could provide a clue into what happened.  What was missing?

The vast majority of investors measure and compare the quality of their investments by calculating risk-adjusted returns provided by any number of readily available ratios such as Sharpe, Sortino, and others.  The denominator in these ratios is always risk.  Risk, conveniently, is measured by calculating standard deviation of returns, an observable metric.    Even if Viniar exaggerated and the event that occurred was “only” a 15-Sigma event (27% monthly loss divided by the fund’s monthly standard deviation of ~1.8%) this would imply a one-in-1.308E+49 chance of such a loss, an equivalent of winning the Powerball lottery 5 times in a row[2]

The only logical conclusion is that the models that Goldman (and most other investors in 2007-2008) were using were inadequate.  The true risk could not be explained by volatility of historical returns.  Another source of risk creeped into their portfolio, resulting in a massive overallocation of risk capital.

Let’s reverse engineer the true risk that was embedded in Goldman’s portfolio at that time.  If we assume that a loss like this might occur once every 1,000 years (=12,000 months), this would have been an approximately 5-sigma event, implying the monthly standard deviation of 5.4%, triple the market risk implied by volatility of returns.    Assuming the frequency of such loss to be once every 100 years, the implied total risk would be 6.8%, almost quadruple the market risk.

Clearly, traditional measures of risk failed to predict the true size of the problem.  Proper due diligence could have uncovered the fat tail not visible through the lens of market analysis.

What was the source of that additional risk?  In Goldman’s case, it was something called “model risk”, or the likelihood that internally-developed investment models did not properly account for all aspects of complex investments.    In other cases, infrastructural risks such as a cyber-security breach, unauthorized cash movements, trade errors, or plain fraud, could decimate an investment that may otherwise seem relatively safe.

Estimating non-market risk must be a critical component of any investment analysis.  The challenge is that these risks are incredibly difficult to quantify ex ante.  Just like in the above example, we can only do this ex post, by which time it’s always too late.

One of the problems in quantifying non-market risk is that it does not have a clear scale or a standard measure.   Most investors who perform a thorough due diligence do so using their own proprietary metrics, and thus no standard measure is available for investors to use in estimating their true risk.

DDX blockchain protocol aims to change this.  With multiple participants sharing their findings in a trusted, secure distributed network, a quantifiable measure can potentially be established.  It will not be as clear cut or formulaic as standard deviation of returns.  But in a world where no measure exists at all, consensus-based risk metrics can help make risk management and capital allocation decisions a lot more efficient.

To learn about our project or apply to join the group of large financial institutions helping us with the development of the blockchain due diligence protocol, visit our website,

[1] “How Unlucky is 25-Sigma?” By Kevin Dowd, John Cotter, Chris Humphrey and Margaret Woods, March 24 2008. Available at SSRN:

[2] Probability of winning a single Powerball lottery is 1 in 292 million according to an Allstate report.  Winning it 5 times in a row is (1/292 million)^5 or 4.7197E+43, slightly better odds than 15 sigma.